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ABSTRACT

Accurate simulation of seismic wave propagation in com-

plex geologic structures is of particular interest nowadays.

However, difficulties arise for complex geologic structures

with great and rapid structural changes, due, for instance, to

the presence of shadow zones, head waves, diffractions and/

or edge effects. Different methods have thus been developed

and are typically tested on synthetic configurations against

analytical solutions for simple canonical problems, reference

methods, or via direct comparison with real data acquired in

situ. Such approaches have limitations, especially if the propa-

gation occurs in a complex environment with strong-contrast

reflectors and surface irregularities because it can be difficult

to determine the method that gives the best approximation of

the “real” solution or to interpret the results obtained without

an a priori knowledge of the geologic environment. An

alternative approach for seismics consists in comparing the

synthetic data with data obtained in laboratory experiments.

In contrast to in situ experiments, high-quality data are col-

lected under controlled conditions for a known configuration.

In contrast with numerical experiments, laboratory data pos-

sess many of the characteristics of field data because real

waves propagate through models with no numerical approxi-

mations. Our main purpose was to test the approach of using

laboratory data as reference data for benchmarking 3D numeri-

cal methods and techniques using the setup that we have

designed for this study. We performed laboratory-scaled mea-

surements of zero-offset reflection of broadband pulses from a

strong topographic environment immersed in a water tank. We

compared these measurements with numerical data simulated

by means of a discretized Kirchhoff integral method. The com-

parisons of synthetic and laboratory data indicated a good

quantitative fit in terms of time arrivals and acceptable fit in

amplitudes. Thus, the first step of the approach was success-

fully applied.

INTRODUCTION

Accurate simulation of seismic wave propagation in complex

geologicl structures is of particular interest nowadays due to its

applicability in various forward and inverse problems (e.g., Ursin,

2004; Robertsson et al., 2007; Virieux and Operto, 2009; Virieux

et al., 2011). It is widely used for environmental and industrial ap-

plications for subsurface structure evaluation and in various aspects

of seismic exploration, such as seismic data acquisition, data

processing, interpretation, and as a core tool of seismic imaging

and inversion methods.

In models with simple structures and slowly varying material

properties, conventional methods (e.g., ray methods and finite-dif-

ference methods) are efficient. However, difficulties arise for com-

plex geologic structures with great and rapid structural changes, and

conventional methods may then fail to simulate realistic wavefields

due to the presence of shadow zones, head waves, diffractions and/

or edge effects. Numerous attempts have been made to improve

seismic modeling methods for complex geologic models with struc-

tural complexities such as faults with steep dips or curved reflectors.

Different methods have thus been developed and are typically

tested on synthetic configurations against analytical solutions for
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simple canonical problems or reference methods. Several projects

focusing on verification and validation of numerical methods have

been conducted in the last few years. The most recent are, for ex-

ample, the SPICE code validation project (Moczo et al., 2006) and

its continuation, the SISMOWINE verification project, aimed at

creating a long-term basis for benchmarking numerical methods

and codes for seismic wave propagation and earthquake motion

simulation and the SEAM project (Fehler and Keliher, 2011) used

to generate synthetic data sets for benchmarking and testing new

processing algorithms. Different numerical codes were compared

during the latter project to choose the most suitable one. Such

an approach has limitations, especially if the propagation occurs

in a complex environment with strong-contrast reflectors and sur-

face irregularities because it can be difficult to determine the

method that gives the best approximation of the real solution given

by a reference method. Another approach is to validate these meth-

ods via direct comparison with real data acquired in situ (Houbiers

et al., 2012; Zhang et al., 2012). Unfortunately, without a priori

(good) knowledge of the geologic environment, the interpretation

of the obtained results may be a tedious task due to the existence

of diffraction and sideswipe events.

An alternative approach for seismic simulation consists in com-

paring the synthetic data with data obtained in the laboratory. The

main assumption underlying this approach is that scaled physical

mechanisms are identical to field physical mechanisms (Ebrom

and McDonald, 1994). Such an approach holds in our case because

we will resort to a linear wave equation. In contrast to in situ experi-

ments, high-quality data are collected under controlled conditions

for a known configuration, which is important for comparisons with

numerical propagation models. Moreover, unlike synthetic data,

laboratory data possess many of the characteristics of field data

(random and signal-generated noise, multiples, mode conversions),

as real waves propagate through models with no numerical approx-

imations.

Since the first part of the 20th-century small-scaled physical

modeling approaches have been extensively exploited in seismic

simulation for a better understanding of wave propagation phenom-

ena by studying the kinematics (Rieber, 1936; Howes et al., 1953;

Oliver et al., 1954; Woods, 1956; Angona, 1960), and for validation

of theoretical predictions by using amplitude measurements (Gran-

nemann, 1956; Roever et al., 1959; Hilterman, 1970; Howson and

Sinha, 1984; Pant et al., 1992; Chen and McMechan, 1993). The

advent of computing technologies has led to application of physical

model data in testing seismic processing and imaging techniques

(French, 1974; Macdonald et al., 1987; Lo et al., 1988). Initially,

the main reason for developing physical modeling for studying

complex wave propagation was the low level of computational

power that made numerical modeling unrealistic. But even nowa-

days, physical modeling is still frequently used for configurations

whose response is difficult to model numerically. It has been used to

study wave propagation in complex 3D media, such as anisotropic

(Stewart et al., 2013), random heterogeneous (Sivaji et al., 2002),

dynamic (Sherlock and Evans, 2001), fractured (Ekanem et al.,

2013), or anelastic (Lines et al., 2012) media. Data from laboratory

experiments are considered as input data in inverse problems (Pratt,

1999), for testing new data processing algorithms (Campman et al.,

2005), in time-lapse 3D studies (Sherlock et al., 2000), and to

benchmark numerical model solutions (Bretaudeau et al., 2011).

Our aim is to study 3D complications in zero-offset reflection pro-

files acquired over a strong topographic environment to improve the

understanding of the physical mechanisms involved in the interaction

of the waves with irregular surfaces. As noted previously, in such a

complex environment the numerical methods based on approxima-

tions may fail to simulate accurately the seismic wavefields and pro-

duce different results depending on their intrinsic hypotheses. The

main purpose of this article is therefore to test the approach of using

laboratory data as reference data for benchmarking 3D numerical

methods and techniques using the Marseille model setup that we

have specially designed for this study. The Marseille model is partly

based on French’s model (French, 1974). In addition to a plane fault

and a full dome, it contains original features such as a truncated

dome and a truncated pyramid. The presence of the edges and

the corners of these structures is expected to complicate the wave-

fields significantly. Using the indoor tank facilities of the Laboratoire

de Mécanique et d’Acoustique (LMA, Marseille, France), we have

performed laboratory-scaled measurements of zero-offset reflection

of broadband pulses on the Marseille model immersed in a water

tank. In what follows, we will present comparisons of these measure-

ments with numerical data simulated by means of a discretized

Kirchhoff integral method. The choice of the numerical method

can be explained by several factors: it is computationally inexpensive

and fast, still able to model piecewise smooth interfaces (at least ap-

proximately); and it allows for modeling events independently,

which leads to an easier interpretation of the results. The discretized

Kirchhoff integral method can be seen as a simplified version of the

tip-wave superposition method software package (TWSM) (Ayzen-

berg, 2008) with conventional plane-wave reflection coefficients

(PWRCs) used instead of the effective reflection coefficients

(ERC) suggested by the authors of the method. TWSM has been

tested for various synthetic configurations, such as a plane interface

against exact modeling (Ayzenberg et al., 2007), French’s model

against the finite-difference method (Ayzenberg, 2008; Ayzenberg

et al., 2008), and flexural interfaces against the generalized ray

tracing method (Ayzenberg et al., 2009). The numerical tests showed

very good fit with analytical solutions, numerical methods, and

asymptotic theoretical estimations in terms of traveltimes and ampli-

tudes. It has been shown that the TWSMwith ERC can be effectively

applied in seismic modeling of reflections and transmissions, a wide

range of caustic effects, head, diffracted, and creeping waves at

smooth or irregular interfaces. TWSM with PWRC is faster and ef-

ficient in terms of memory usage and produces similar results for

precritical offsets, but it can become inaccurate for near- and post-

critical offsets. For the zero-offset configuration with a focused-beam

source presented here, the discretized Kirchhoff integral method, i.e.,

the TWSM with PWRC, can be used to decrease the computational

costs while still preserving the accuracy.

Here also, we will be concerned only with propagation problems.

Discussion of migration problems is left for further articles. Some

preliminary results of the comparison between laboratory data and

numerical methods used for 2D modeling of wave propagation have

already been reported at conferences (e.g., Cristini et al., 2012;

Tantsereva et al., 2012). Here, we present additional results for

3D modeling and quantitative evaluation of the comparison be-

tween experimental and numerical data.

This paper is organized as follows: In the first section, we describe

the experimental setup and present the laboratory data obtained

in zero-offset configurations with narrow-beam and broad-beam
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transducers. The second section is devoted to the description of the

numerical modeling method. In the third section, we compare the

laboratory and synthetic data and discuss the results obtained.

SMALL-SCALE SEISMIC MODELING

Experiment description

Several laboratory experiments were carried out at LMA in Mar-

seille, France. Wave propagation occurs in small-scale conditions;

i.e., for instance, if a scaling factor μ ¼ 2 · 104 is considered, an

experimental frequency of 500 kHz corresponds to a real frequency

of 25 Hz, and an experimental distance of 10 mm corresponds to a

real distance of 200 m, velocities as well as densities and attenu-

ations remaining unchanged.

The model used in these experiments, called the “Marseille

model,” is partly based on French’s model (French, 1974), but it

contains original topographies such as a truncated dome and a

truncated pyramid (see Figure 1). The model of size 600 × 400 ×

70 mm is made of PVC, which is isotropic at ultrasonic frequencies

and whose elastic properties are in the same range as those of typ-

ical geologic media. The thickness of the model is from 30 to

70 mm, the difference between the two levels separated by a planar

fault being 40 mm. The domes are parts of the spheres on the lower

level with the radii equal to 90.83 and 51.25 mm for the truncated

and full dome, respectively, the radius of their base being equal to

100 mm. The height of the truncated dome is 15 mm, and the height

of the full dome is 40 mm. The base of the truncated pyramid is a

square 90 × 90 mm, and the height of the pyramid is 30 mm. These

values have been chosen to be much greater than the wavelength in

water for the considered frequency range. The model is immersed in

a water tank equipped with a computer-controlled system that al-

lows for accurate positioning of the source and receiver. The

measured properties of the materials are c ¼ 1476 − 1493 m∕s

(depending on the water temperature) and ρ ¼ 1000 kg∕m3 in

the water layer, and VP ¼ 2220 m∕s, VS ¼ 1050 m∕s, and ρPVC ¼
1412 kg∕m3 in the PVC. Attenuation in the PVC layer is described

by the quality factors 40 < QP < 60 and

27 < QS < 31 for P- and S-waves, respectively.

Attenuation in the water is negligible.

As we consider the zero-offset seismic con-

figuration only for these experiments, we illumi-

nate the model using a piezoelectric transducer

operated as a source and a receiver. We use

two types of piezoelectric transducers with a

dominant frequency equals to 500 kHz. The

two transducers have different beam apertures,

namely narrow-beam and broad-beam apertures,

which allow us to obtain two different zero-

offset data sets. Diameters of the piezoelectric

elements for narrow-beam and broad-beam trans-

ducers are D ¼ 25.4 mm and D ¼ 3 mm, re-

spectively. The width of the main lobe of the

beams generated by the transducers is 8.3° and

45° at −3 dB for the narrow-beam and the

broad-beam transducers, respectively. The re-

sponse of each transducer has been measured

by pointing its beam toward the air-water inter-

face. The waveform has been filtered after ac-

quisition, to eliminate the harmonic resonances

of the transducer. Filtering consists in applying a eighth-order But-

terworth filter to the acquired data, which corresponds to a low-pass

filter with a cut-off frequency of 1.1 MHz. The resulting filtered

source signal associated to each transducer and its frequency spec-

trum are indicated in Figures 2 and 3. It can be noticed from the

figures that each transducer covers a wide frequency range. The dis-

tance of separation between the near-field and the far-field regions

is calculated using the known formula (Zemanek, 1971)

dFF ¼ D2∕ð4λwaterÞ;

where λwater ¼ 3 mm denotes the wavelength in water. It is equal

to 55 and 7.5 mm for the narrow- and broad-beam transducers,

respectively.

We use a conventional ultrasonic pulse-echo technique to obtain

the reflection data. The piezoelectric transducers are located at a

distance of 105 mm (�1 mm) or 150 mm (�1 mm) above the flat

part of the model surface. The shortest distance to the model surface

being 65 or 110 mm, the far-field zone condition being thus fulfilled

for any position of the transducer over the Marseille model. The

acquisition design is shown in Figure 4. The area covered by the

Figure 1. Marseille model with its fault, full and truncated domes,
and truncated pyramid. The size of the model is 600 ×
400 × 70 mm.
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Figure 2. Time signal and associated spectrum for the narrow-beam transducer.
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acquisition is different depending on the beam width of the trans-

ducer operating as the source; i.e., it is smaller for the broad-beam

transducers than for the narrow-beam ones to avoid diffractions by

the edges of the model. We perform acquisitions along Y-lines with

a spatial samplingΔx equal to 2 mm. The collected data thus consist

of numerous parallel profiles composed of a collection of reflection

data for dense grids of source-receiver locations. We process reflec-

tion data to produce seismograms corresponding to different cross

sections of the model. We pay more attention to a few specific pro-

files because they are of high interest as they cross the main struc-

tures of the model. The data collected along these profiles might

thus contain reflections and diffractions from all the structures.

These profiles are represented by dotted and dashed-dotted lines

in Figure 4. Line Y150 provides the profile over the top of the trun-

cated dome, line Y200 is located between the two domes, and line

Y250 cuts the top of the full dome and the pyramid.

The seismograms are obtained after application of a low-pass fil-

ter to raw data to eliminate the harmonic resonances of the trans-

ducers. Additionally, for visualization purposes, we apply a clipping

procedure to all seismograms presented below with the clipping

number x ¼ 50, i.e., saturation of all the signals whose amplitude

is greater than x% of the maximum amplitude to enlighten weaker

signals. Small variations in the two-way traveltimes for reflections

from the plane parts of the model can be observed. They are due to

nonconstant tilt of the Marseille model during ac-

quisition, with position errors of less than 2%.

Varying water temperature in the tank during

long-lasting acquisitions can also have some ef-

fect on the time arrivals (see Bilaniuk and Wong

[1993]) for the discussions on water velocity var-

iations with temperature).

Data for the narrow-beam source

For the first experiment with the narrow-beam

transducer, the distance from the transducer to

the flat part of the model surface is 105 mm. Fig-

ure 5a–5c, left, shows data recorded in the labo-

ratory along the three lines Y150, Y200, and

Y250. Events with a time arrival smaller than

0.15 ms correspond to primary reflections from

the top surface of the model. Events with a

greater time arrival corresponding to either multi-

ples or reflections from the bottom surface of the

model are not shown here. One can see that the

recorded signals are of high quality due to a high

signal-to-noise ratio.

By qualitatively analyzing Figure 5a–5c, we

can note that the structures are partly visible only

if the top of their surfaces, cut by the acquisition

profiles, is quite parallel to the piezoelectric

element of the transducer. For line Y200, posi-

tioned between the domes, sideswipe reflections

are not visible. The steep slopes of the nontrun-

cated dome, the pyramid, and the fault cannot be

observed. Diffractions at the edges of the topo-

graphic structures also cannot be clearly ob-

served.

Data for the broad-beam source

For the second experiment with the broad-

beam transducer, the distance from the trans-

ducer to the flat part of the model surface is

150 mm. Figure 6a–6c, left, shows data recorded

in the laboratory along the same three lines

Y150, Y200, and Y250. Events with a time

arrival smaller than 0.21 ms correspond to pri-

mary reflections from the top surface of the

model. Events with a greater time arrival corre-

sponding to either multiples or reflections from

the bottom surface of the model are not shown
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Figure 3. Time signal and associated spectrum for the broad-beam transducer.

Figure 4. Acquisition design and area covered by acquisition with the narrow-beam
transducer (dark gray) and with the broad-beam transducer (light gray).
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here. Again, one can note that the recorded signals are of very high

quality due to a high signal-to-noise ratio.

Though these data are zero-offset, they exhibit interesting 3D ef-

fects, such as diffractions at the edges of the topographic structures

and reflections from the out-of-plane structures and the fault. Never-

theless, the steep slopes of the truncated pyramid remain invisible.

NUMERICAL MODELING

We use a discretized Kirchhoff integral method for synthetic

modeling of the zero-offset experiments.

We consider the model used in the experiment described above:

a homogeneous fluid medium (water) overlying an isotropic

a)

b)

c)

d)

e)

f)

Figure 5. Laboratory seismograms (left) and single-scattering synthetic seismograms (right) obtained with the narrow-beam transducer along
(a) line Y150, (b) line Y200, and (c) line Y250.
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viscoelastic medium (PVC). The fluid medium D1 is characterized

by the wave velocity c and the mass density ρ. The viscoelastic

medium D2 is characterized by the P-wave velocity VP, S-wave

velocity VS, the mass density ρPVC, and the quality factors QP

and QS. The media are separated by a piecewise smooth interface

Σ. A piezoelectric disk transducer SD of a finite diameter D is im-

mersed in the fluid and acts as a source of incident radiation and as a

receiver of reflected and diffracted wavefields. We thus consider a

zero-offset configuration. The vertical section of the described con-

figuration is sketched in Figure 7.

a)

b)

c)

d)

e)

f)

Figure 6. Laboratory seismograms (left) and single-scattering synthetic seismograms (right) obtained with the broad-beam transducer along
(a) line Y150, (b) line Y200, and (c) line Y250.
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Let x ¼ ðx1; x2; x3Þ be a fixed Cartesian coordinate system. The

pressure wavefield pðx; tÞ and its spectrum Pðx;ωÞ are connected

via the forward and inverse temporal Fourier transforms using the

sign convention in Aki and Richards (2002) and Chapman (2004).

Here, t is the time and ω is the angular frequency. In the following,

we shall not write the dependence on ω explicitly.

The Green’s function for the Helmholtz equation

�

▿
2 þ

ω2

c2

�

Gðx; xsÞ ¼ −4πδðx − xsÞ (1)

is

Gðx; xsÞ ¼
eiωr∕c

r
; (2)

where r ¼ jx − xsj is the distance between the points xs and x, xs

being the position of the point source.

We consider the integral representation theorem for a fluid

medium bounded by a piecewise smooth interface Σ. The total

wavefield from a source in the fluid consists of the direct source

field, the singly scattered field, and the multiply scattered field.

We shall only consider single scattering, which includes single

reflections from interfaces and single diffractions from edges and

vertices (Tygel and Ursin, 1999). The singly scattered pressure

wavefield Psscðx
rÞ at a given receiver point xr can be represented

by the Kirchhoff-Helmholtz surface integral (see, e.g., Haddon and

Buchen, 1981):

Psscðx
rÞ ¼

1

4π

Z Z

Σ

�

∂Ĝðxr; xÞ

∂n
PrefðxÞ

− Ĝðxr; xÞ
∂PrefðxÞ

∂n

�

dΣðxÞ; (3)

where Ĝðxr; xÞ is the response at the transducer at xr from the sur-

face point x.

When the interface is located in the far zone with respect to the

transducer, there are theoretical estimations and laboratory experi-

ments proving that the response function Ĝðxr; xÞ can be approxi-

mated by (see, e.g., Zemanek, 1971; Harris, 1981)

Ĝðxr; xÞ ≈ Gðxr; xÞA½ψðxr; xÞ�; (4)

with the directivity function A½ψðxr; xÞ�, which is the same for ra-

diation and reception, ψðxr; xÞ being the angle between the normal

to transducer’s surface and the ray connecting points x and xr. For

the narrow-beam transducer, it is shown in Zemanek (1971) that the

directivity function is given by

A½ψðxr; xÞ� ¼ C
J1ðξÞ

ξ
; (5)

where ξ ¼ πD
λ

sin ψðxr; xÞ, J1 being the first-order Bessel function

of the first kind, C ¼ const. For the broad-beam transducer, the di-

rectivity function A½ψðxr; xÞ� is given by a table of discrete mea-

sured values instead of analytical representation.

Applying the Kirchhoff approximation (Bleistein, 1984), we can

represent the boundary values of the reflected wavefield PrefðxÞ and
its normal derivative at the interface Σ in the Kirchhoff-Helmholtz

integral 3 in terms of the PWRC R½θðx; xsÞ� as

PrefðxÞ ≈ FðωÞR½θðx; xsÞ�Gðx; xsÞA½ψðx; xsÞ�;

∂PrefðxÞ

∂n
≈ −FðωÞR½θðx; xsÞ�

∂Gðx; xsÞ

∂n
A½ψðx; xsÞ�; (6)

where θðx; xsÞ is the angle of incidence at the fluid-PVC contact and

the Fourier transform of the source wavelet FðωÞ is included.
Substituting approximation 6 in the singly scattered pressure

wavefield 3 for zero-offset configuration xr ¼ xs, we obtain the fol-

lowing approximation for the singly scattered pressure wavefield:

Psscðx
rÞ ≈

FðωÞ

2π

Z Z

Σ

∂Gðxr; xÞ

∂n
R½θðx; xrÞ�Gðx; xrÞ

× A2½ψðx; xrÞ�dΣðxÞ: (7)

Approximation 7 is valid for precritical values of the incident

angle θ, which is a suitable assumption for zero-offset configu-

ration.

We calculate the Kirchhoff-type surface integral 7 by discretiza-

tion of the reflector into small rhombic elements. It is shown in Ay-

zenberg et al. (2007) that, if an element is less than a quarter of the

wavelength, then surface integral 7 becomes a sum of the integrals

over a plane projection of each rhombic element to the tangent

plane

Psscðx
rÞ ¼

X

m

P̄mðx
rÞ; (8)

ΔP̄mðx
rÞ ¼

FðωÞ

2π

Z Z

ΔΠm

∂Gðxr; xÞ

∂n
R½θðx; xrÞ�Gðx; xrÞ

× A2½ψðx; xrÞ�dx: (9)

In the far-field approximation, the contribution from one element

can be computed as

ΔP̄mðx
rÞ ≈

iωFðωÞ

2πc
Gðxr; xmÞGðxm; x

rÞR½θðxm; x
rÞ�

× cos θðxr; xmÞA
2½ψðxm; x

rÞ�ΔΠm: (10)

P S

Figure 7. Vertical section of the considered model.
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We cover the model along the considered profiles with squares

consisting of 200 × 200 square elements for 10 subsequent posi-

tions of the transducer. We choose the area of the square in such

a way that it covers the surface illuminated by the transducer, taking

into account the distance from the transducer to the surface and the

width of the beam generated by the transducer. We choose the size

of the element as a quarter of the dominant wavelength in the water

to apply the above-mentioned approximations.

We use the Kolsky-Futterman model (Kolsky, 1956; Futterman,

1962) to introduce the attenuation in the PVC layer to numerical

modeling. The Kolsky-Futterman model assumes that attenuation

is strictly linear with the frequency over the seismic frequency

range (1–200 Hz), which fits well with the experiments. The reflec-

tion coefficient R½θðx; xrÞ� thus becomes complex and frequency-

dependent as a function of complex and frequency-dependent

velocities in the PVC layer.

In Figures 5 and 6, right, we show the results of modeling of the

primary reflection from the top of the PVC along the Y-lines. All data

sets are normalized by dividing the signal amplitude by the maximum

amplitude of the whole data set acquired for the same transducer, and

we apply a static time shift to the whole data set. We also apply addi-

tional trace-dependent time shifts to synthetic seismograms due to the

above-mentioned data inconsistencies in traveltimes, i.e., we adjust

the reflections from the plane parts of the model based on a normal-

ized crosscorrelation coefficient.

DATA COMPARISONS

In this section, we compare the experimental data to the synthetic

data. Visual observation of the total seismograms for laboratory data

and single-scattering seismograms for synthetic data shows a good

fit in the modeling of reflection and diffraction events (Figures 5

and 6). Let us provide a quantitative analysis by performing a

numerical comparison of three selected traces for each profile line,

corresponding to the source positions marked with crosses in

Figure 4 and with arrows in Figures 5 and 6. Note that the source

positions are the same for narrow- and broad-beam transducers.

We use several error norms for quantitative analysis of the misfit

between numerical and laboratory data. Let us consider two seismo-

grams sðtÞ and srefðtÞ, where sðtÞ is the numerical signal, srefðtÞ is
the laboratory (reference) signal, and t is time.

The single-valued normalized crosscorrelation coefficient cc is

defined as (Wilks, 2011)

cc ¼

P

tðsðtÞ − s̄Þ · ðsrefðtÞ − s̄refÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t

ðsðtÞ − s̄Þ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t

ðsrefðtÞ − s̄refÞ
2

r ; (11)

where s̄ and s̄ref are the mean values of the corresponding series.

That crosscorrelation coefficient estimates the degree to which

two signals are correlated in terms of phase and satisfies

−1 ≤ cc ≤ 1. The equality cc ¼ 1 is for perfect correlation,

cc ¼ 0 for uncorrelated series, and cc ¼ −1 for negative correlation.

The most commonly used single-valued misfit criterion is the

root mean square (rms) misfit defined as

rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

tjsðtÞ − srefðtÞj
2

P

t

jsrefðtÞj
2

v

u

u

t : (12)

The disadvantage of using the rms misfit is that it gives the quan-

titative measure of the difference between the signals without indi-

cating the reason of the difference. Moreover, it often overestimates

the difference between two signals due to misinterpretation of time

shifts as amplitude differences. To define the phase and amplitude

misfits separately, the crosscorrelation coefficient cc can be used to

determine the phase misfit (PM) and the rms misfit to determine the

amplitude misfit after shifting the seismogram by the PM (see, e.g.,

Fehler and Keliher [2011] for more details on the technique and

discussion of shortcomings of using the rms misfit alone).

However, the frequency dependence of the misfit cannot be de-

fined this way. Therefore, in addition we consider the misfit criteria

based on the time-frequency representation using the continuous

wavelet transform introduced by Kristeková et al. (2009). They de-

fine a time-frequency envelope difference

ΔEðt; fÞ ¼ jWðt; fÞj − jWrefðt; fÞj (13)

and a time-frequency phase difference

ΔPðt; fÞ ¼ jWðt; fÞj
arg½Wðt; fÞ� − arg½Wrefðt; fÞ�

π
; (14)

where Wðt; fÞ and Wrefðt; fÞ are the complex functions of the

continuous wavelet transforms of the numerical and reference sig-

nals, respectively. See Kristeková et al. (2009) for a detailed de-

scription of the time-frequency representation. The free software

package TF-MISFITS can be downloaded from www.nuquake

.eu/Computer_Codes/.

The time-frequency envelope misfit (EM) is then obtained as

TFEMðt; fÞ ¼
ΔEðt; fÞ

maxt;fðjWrefðt; fÞjÞ
; (15)

and the time-frequency PM as

TFPMðt; fÞ ¼
ΔPðt; fÞ

maxt;fðjWrefðt; fÞjÞ
: (16)

The term TFEMðt; fÞ characterizes the difference between the enve-

lopes of the two signals as a function of time and frequency, and

TFPMðt; fÞ characterizes the difference between the phases of the

two signals. In addition, Kristeková et al. (2009) define time-inde-

pendent (frequency envelope misfit [FEM] and frequency phase

misfit [FPM]) and frequency-independent (time envelope misfit

[TEM] and time phase misfit [TPM]) misfits as a projection of

the time-frequency misfits onto one of the two domains. Here,

we will also use single-valued measures of fit based on the error

norms defined above, i.e., a single-valued EM

EM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

f

P

t jΔEðt; fÞj
2

P

f

P

t

jWrefðf; tÞj
2

v

u

u

u

t

(17)

and a single-valued PM
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d) e) f)
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Figure 9. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along the line Y200. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.

a) b) c)

d) e) f)

g) h) i)

Figure 8. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along line Y150. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, (f) and frequency phase misfit FPMðfÞ. (i-g) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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PM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

f

P

t jΔPðt; fÞj
2

P

f

P

t

jWrefðf; tÞj
2

v

u

u

u

t

: (18)

The values of the normalized crosscorrelation coefficient, the rms

misfit, the single-valued EM, and the single-valued PM for the se-

lected traces are given in the Tables 1–4, respectively.

Comparison for narrow-beam data

We provide the more detailed comparison of three traces obtained

using the numerical modeling and recorded in the laboratory for

each of the three lines (see Figures 8–10). In these figures, we show

the TFEMðt; fÞ and TFPMðt; fÞ for the three source positions along
lines Y150, Y200, and Y250 together with the comparison of the

laboratory and numerical traces in the time domain. Note that the

range of the color scale and the misfit axes is the same for all plots

and spans �40%.

In Figure 8, the (a) trace corresponds to the reflection from the

flat part of the model, the (b) trace to the reflection from the top of

the truncated dome, and the (c) trace to the reflection from the flat

part of the model in the vicinity of the cut of the dome. The quali-

tative comparison between TFEMðt; fÞ and TFPMðt; fÞ plots

shows a good fit of the traces in terms of the shape and the phase

of the signal, but it reveals discrepancies in terms of amplitude,

which are quite low for reflections from the flat part of the model,

but become significant over the top the dome.

Figures 9 and 10 present the same comparisons for lines Y200

and Y250, respectively. In Figure 9, all the traces correspond to the

Table 1. Normalized crosscorrelation coefficient.

Line Y150 Line Y200 Line Y250

NB1 0.9854 0.9816 0.9862

NB2 0.9762 0.9884 0.9881

NB3 0.9834 0.9850 0.9878

BB1 0.9730 0.9816 0.9833

BB2 0.9798 0.9611 0.9782

BB3 0.9225 0.9467 0.9501

Table 2. The rms misfit.

Line Y150 Line Y200 Line Y250

NB1 0.2417 0.2170 0.3875

NB2 0.2792 0.2229 0.2364

NB3 0.2981 0.2247 0.2180

BB1 0.2461 0.2170 0.1995

BB2 0.2490 0.2762 0.2279

BB3 0.4287 0.3222 0.3271

a) b) c)

d) e) f)

g) h) i)

Figure 10. Time-frequency representation of the misfits for source positions NB1 (a), NB2 (b), and NB3 (c) for the narrow-beam transducer
along the line Y250. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, (c) and frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfits TFPMðt; fÞ, (e) time phase misfits TPMðtÞ, and (f) frequency phase misfits FPMðfÞ. (g-i) Com-
parison of the laboratory (red) and numerical (blue) seismograms.
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reflection from the flat part of the model, and in Figure 10, the (a)

trace corresponds to the reflection from the top of the full dome, and

the (b) and (c) traces correspond to the reflection from the flat part

of the model. Similar qualitative results, i.e., a good fit in terms of

the shape and the phase of the signal, but discrepancies in terms of

amplitude, can be observed for these two lines as well.

The qualitative results shown above are confirmed quantitatively

by the high values of the normalized crosscorrelation coefficient

(see Table 1, top) and the low values of PM (see Table 4, top)

on the one hand, indicating that the phase fit is very good, and

by relatively high values of the rms misfit and EM (see Tables 2

and 3, top) for the reflections from the domes on the other hand.

Note that the highest values are for the reflection from the top

of the full dome. The problems with amplitude modeling over

highly curved structures can be explained by oversimplification

in description of reflection phenomenon with the PWRCs instead

of the ERCs (see Ayzenberg et al., 2007) for more details on the

topic). Using the PWRCs leads to increasing of relative errors in

amplitude even for short offsets in the case of highly curved reflec-

tors. The main source of error is that reflection of the incident wave-

front from a convex spherical dome is numerically equivalent to

reflection of an apparent wave with a higher front curvature at

an apparent plane reflector. Note that the apparent front curvature

is equal to the sum of the actual front curvature and the actual cur-

vature of the reflector at the reflection point. Then, an apparent

transducer is located at a twice as short distance from the reflector

as the actual one is, which corresponds to the near-field region, and

the ERCs should be applied. Therefore, the singly scattered wave-

field modeled with the PWRCs contains larger amplitude errors.

Table 3. Single-valued EM.

Line Y150 Line Y200 Line Y250

NB1 0.1995 0.1267 0.3409

NB2 0.2190 0.1752 0.1958

NB3 0.2553 0.1561 0.1692

BB1 0.1633 0.1945 0.1355

BB2 0.1909 0.1422 0.1387

BB3 0.1865 0.1794 0.1982

Table 4. Single-valued PM.

Line Y150 Line Y200 Line Y250

NB1 0.0394 0.0545 0.0370

NB2 0.0517 0.0394 0.0350

NB3 0.0485 0.0487 0.0367

BB1 0.0677 0.0562 0.0573

BB2 0.0547 0.0785 0.0507

BB3 0.1165 0.0955 0.0839

a) b) c)

d) e) f)

g) h) i)

Figure 11. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along the line Y150. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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a) b) c)

d) e) f)

g) h) i)

Figure 13. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along the line Y250. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.

a) b) c)

d) e) f)

g) h) i)

Figure 12. Time-frequency representation of the misfits for source positions BB1 (a), BB2 (b), and BB3 (c) for the broad-beam transducer
along line Y200. (a) Time-frequency envelope misfit TFEMðt; fÞ, (b) time envelope misfit TEMðtÞ, and (c) frequency envelope misfit
FEMðfÞ. (d) Time-frequency phase misfit TFPMðt; fÞ, (e) time phase misfit TPMðtÞ, and (f) frequency phase misfit FPMðfÞ. (g-i) Comparison
of the laboratory (red) and numerical (blue) seismograms.
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Comparison for broad-beam data

We provide a more detailed comparison of three traces obtained

using numerical modeling and recorded in the laboratory for each

of the three lines (see Figures 11–13). Note that the considered

traces correspond to the same source positions as for the narrow-beam

data. In these figures, we show the TFEMðt; fÞ and TFPMðt; fÞ for
the three source positions along lines Y150, Y200, and Y250 together

with the comparison of the laboratory and numerical traces in the time

domain. The range of the color scale and the misfit axes is again the

same for all plots and spans �40%.

In Figure 11, the (a) trace corresponds to the reflection from the

slope of the truncated dome and the flat part of the model, the (b)

trace to the reflection from the top of the truncated dome, and the

(c) trace to the diffraction from the cut of the truncated dome and

the reflection from the flat part of the model. The qualitative com-

parison and the TFEMðt; fÞ and TFPMðt; fÞ plots show a good fit

of the traces in terms of the shape and the amplitude of the signals,

but it reveals a phase shift of the diffraction from the cut of

the dome.

The qualitative result is confirmed quantitatively by the high val-

ues of the normalized crosscorrelation coefficient (see Table 1) and

low values of the rms misfit, EM and PM (see Tables 2–4) for the

first two traces, showing that the amplitude and the phase fit is very

good. For the third trace, however, the visible phase shift of the

diffraction results in a low crosscorrelation value and higher rms

misfit and PM, while the EM is not affected. Larger time, amplitude,

and phase errors for reflection from the cut of the dome can be ex-

plained by neglecting the double-scattering wavefield in the code.

This event received by the transducer is created by the wedgelike

structure from the vertical cut and horizontal part of reflector. It is

composed of two sequential reflections from the cut and horizontal

part and two sequential diffractions at the upper circular and lower

straight edges having common tip points.

Figures 12 and 13 present the same comparisons for lines Y200

and Y250, respectively. In Figure 12, the (a) trace corresponds to the

reflection from the slope of the out-of-plane full dome, the flat part

of the model, and the slope of the out-of-plane truncated dome. The

(b) trace corresponds to the reflection from the slope of the out-of-

plane full dome and truncated dome and the flat part of the model.

The (c) trace corresponds to the reflection from the slope of the fault

and the reflection from the flat part of the model. In Figure 13, the

(a) trace corresponds to the reflection from the top of the full dome,

the (b) trace to the diffraction from the slope of the pyramid and the

reflection from the flat part of the model, and the (c) trace to the

reflection from the slope of the fault and the reflection from the flat

part of the model. Again, qualitative comparison of the TFEMðt; fÞ
and TFPMðt; fÞ plots shows a good fit of the traces in terms of the

shape and the amplitude of the signals, except for the reflections

from the slope of the fault, where small phase shifts can also be

observed.

These results are confirmed quantitatively by slightly lower val-

ues of the normalized crosscorrelation coefficient (see Table 1, val-

ues for BB3) and higher values of rms misfit and PM (see Tables 2

and 4, values for BB3), while relatively low values of EM (see Ta-

ble 3, values for BB3), showing that there are phase shifts, though

the amplitude fit is good. It has been shown (Ayzenberg, 2008) that

the time errors for reflected waves at plane reflectors and diffracted

waves at straight edges modeled by the code do not exceed one

sample. That is why the larger time shifts observed for the reflec-

tions from the slope of the fault can be explained by a wrong tilt of

the model used for modeling.

CONCLUSIONS

We have tested an alternative approach for benchmarking

numerical methods for 3D wave propagation. This approach con-

sists in comparing synthetic data computed using numerical mod-

eling to laboratory data obtained for a known configuration. We

have obtained the laboratory data by laboratory scale measurements

of reflection of broadband pulses from a strong topographic envi-

ronment immersed in water. The experiments have been performed

in zero-offset seismic configuration using a physical model with

strong 3D topographies and narrow- and broad-beam sources/

receivers. The features of the model have complicated surface cur-

vatures, several edges, and vertices, which increase the diffraction

effects produced on the wavefields significantly. These diffraction

effects, together with the existence of shadow zones, make the lab-

oratory experiments of interest. We have computed synthetic data

by means of a discretized Kirchhoff integral method. The compar-

isons between synthetic and laboratory data exhibit a good quanti-

tative fit in terms of time arrivals and acceptable fit in amplitudes for

narrow-beam and broad-beam data sets. Errors in amplitude mod-

eling can be explained by oversimplification in description of re-

flection phenomenon with the PWRCs.

ACKNOWLEDGMENTS

We would like to thank the INSIS Institute of the French CNRS,

Aix-Marseille University, the Carnot Star Institute, the VISTA

project, and the Norwegian Research Council through the ROSE

project for financial support. We greatly acknowledge S. Devic

(LMA Marseille) for curving the Marseille model. We thank the

associate editor and the reviewers for constructive comments that

helped to improve the paper.

REFERENCES

Aki, K., and P. G. Richards, 2002, Quantitative seismology: University Sci-
ence Books.

Angona, F. A., 1960, Two-dimensional modeling and its application to seis-
mic problems: Geophysics, 25, 468–482, doi: 10.1190/1.1438719.

Ayzenberg, M. A., 2008, Three-dimensional seismic diffraction modeling:
Ph.D. thesis, Norwegian University of Science and Technology.

Ayzenberg, M. A., A. M. Aizenberg, H. B. Helle, K. D. Klem-Musatov, J.
Pajchel, and B. Ursin, 2007, 3D diffraction modeling of singly scattered
acoustic wavefields based on the combination of surface integral propa-
gators and transmission operators: Geophysics, 72, no. 5, SM19–SM34,
doi: 10.1190/1.2757616.

Ayzenberg, M. A., A. M. Aizenberg, H. B. Helle, K. D. Klem-Musatov, J.
Pajchel, and B. Ursin, 2008, 3D modeling of acoustic Green’s function in
layered media with diffracting edges: 70th Annual International
Conference and Exhibition, EAGE, Extended Abstracts, P052.

Ayzenberg, M. A., I. Tsvankin, A. M. Aizenberg, and B. Ursin, 2009, Ef-
fective reflection coefficients for curved interfaces in transversely isotropic
media: Geophysics, 74, no. 5, WB33–WB53, doi: 10.1190/1.3197862.

Bilaniuk, N., and G. S. K. Wong, 1993, Speed of sound in pure water as a
function of temperature: Journal of the Acoustical Society of America, 93,
1609–1612, doi: 10.1121/1.406819.

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic
Press.

Bretaudeau, F., D. Leparoux, O. Durand, and O. Abraham, 2011,
Small-scale modeling of onshore seismic experiment: A tool to validate
numerical modeling and seismic imaging methods: Geophysics, 76, no. 5,
T101–T112, doi: 10.1190/geo2010-0339.1.

Modeling of zero-offset laboratory data T89

http://dx.doi.org/10.1190/1.1438719
http://dx.doi.org/10.1190/1.1438719
http://dx.doi.org/10.1190/1.1438719
http://dx.doi.org/10.1190/1.2757616
http://dx.doi.org/10.1190/1.2757616
http://dx.doi.org/10.1190/1.2757616
http://dx.doi.org/10.1190/1.3197862
http://dx.doi.org/10.1190/1.3197862
http://dx.doi.org/10.1190/1.3197862
http://dx.doi.org/10.1121/1.406819
http://dx.doi.org/10.1121/1.406819
http://dx.doi.org/10.1121/1.406819
http://dx.doi.org/10.1190/geo2010-0339.1
http://dx.doi.org/10.1190/geo2010-0339.1
http://dx.doi.org/10.1190/geo2010-0339.1


Campman, X. H., K. van Wijk, J. A. Scales, and G. C. Herman, 2005, Im-
aging and suppressing near-receiver scattered surface waves: Geophysics,
70, no. 2, V21–V29, doi: 10.1190/1.1884831.

Chapman, C. H., 2004, Fundamentals of seismic save propagation: Cam-
bridge University Press.

Chen, H.-W., and G. A. McMechan, 1993, 3D physical modeling and pseu-
dospectral simulation of seismic common-source data volumes: Geophys-
ics, 58, 121–133, doi: 10.1190/1.1443341.

Cristini, P., N. Favretto-Cristini, A. Tantsereva, B. Ursin, A. M. Aizenberg,
and D. Komatitsch, 2012, Laboratory benchmarks vs. synthetic
modeling of seismic wave propagation in complex environments
(BENCHIE project): Results for a spectral-element method and the
tip-wave superposition method: Proceedings of Meetings on Acoustics,
17, 070024.

Ebrom, D. A., and J. A. McDonald, 1994, Seismic physical modeling: SEG.
Ekanem, A. M., J. Wei, X.-Y. Li, M. Chapman, and I. G. Main, 2013, P-

wave attenuation anisotropy in fractured media: A seismic physical mod-
eling study: Geophysical Prospecting, 61, 420–433, doi: 10.1111/j.1365-
2478.2012.01127.x.

Fehler, M., and P. J. Keliher, 2011, SEAM Phase I: Challenge of subsalt
imaging in Tertiary basins, with emphasis on deepwater Gulf of Mexico:
SEG.

French, W. S., 1974, Two-dimensional and three-dimensional migration of
model-experiment reflection profiles: Geophysics, 39, 265–277, doi: 10
.1190/1.1440426.

Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical
Research, 67, 5279–5291, doi: 10.1029/JZ067i013p05279.

Grannemann, W. W., 1956, Diffraction of a longitudinal pulse from a wedge
in a solid: Journal of the Acoustical Society of America, 28, 494–497, doi:
10.1121/1.1908368.

Haddon, R. A. W., and P. W. Buchen, 1981, Use of Kirchhoff’s formula for
body wave calculations in the earth: Geophysical Journal of the Royal
Astronomical Society, 67, 587–598, doi: 10.1111/j.1365-246X.1981
.tb06939.x.

Harris, G. R., 1981, Review of transient field theory for a baffled planar
piston: Journal of the Acoustical Society of America, 70, 10–20, doi:
10.1121/1.386687.

Hilterman, F., 1970, Three-dimensional seismic modeling: Geophysics, 35,
1020–1037, doi: 10.1190/1.1440140.

Houbiers, M., E. Wiarda, J. Mispel, D. Nikolenko, D. Vigh, B. E. Knudsen,
M. Thompson, and D. Hill, 2012, 3D full-waveform inversion at Mariner:
A shallow North Sea reservoir: 82nd Annual International Meeting, SEG,
Expanded Abstracts, doi: 10.1190/segam2012-0242.1.

Howes, E., L. Tejada-Flores, and L. Randolph, 1953, Seismic model study:
Journal of the Acoustical Society of America, 25, 915–921, doi: 10.1121/
1.1907218.

Howson, C. D., and M. C. Sinha, 1984, A comparison of ultrasonic and
synthetic seismograms for a laterally varying structure: Geophysical Jour-
nal of the Royal Astronomical Society, 77, 517–529, doi: 10.1111/j.1365-
246X.1984.tb01946.x.

Kolsky, H., 1956, The propagation of stress pulses in viscoelastic solids:
Philosophical Magazine, 1, 693–710, doi: 10.1080/14786435608238144.

Kristeková, M., J. Kristek, and P. Moczo, 2009, Time-frequency misfit and
goodness-of-fit criteria for quantitative comparison of time signals:
Geophysical Journal International, 178, 813–825, doi: 10.1111/j.1365-
246X.2009.04177.x.

Lines, L., K. Innanen, F. Vasheghani, and J. Wong, 2012, Experimental con-
firmation of “reflections on Q”: 82nd Annual International Meeting, SEG,
Expanded Abstracts, doi: 10.1190/segam2012-0187.1.

Lo, T.-W., M. N. Toksöz, S.-H. Xu, and R.-S. Wu, 1988, Ultrasonic labo-
ratory tests of geophysical tomographic reconstruction: Geophysics, 53,
947–956, doi: 10.1190/1.1442531.

Macdonald, C., P. M. Davis, and D. D. Jackson, 1987, Inversion of reflection
traveltimes and amplitudes: Geophysics, 52, 606–617, doi: 10.1190/1
.1442330.

Moczo, P., J.-P. Ampuero, J. Kristek, S. M. Day, M. Kristeková, P. Pazak, M.
Galis, and H. Igel, 2006, Comparison of numerical methods for seismic
wave propagation and source dynamics — The SPICE code validation:
Presented at International Symposium on the Effects of Surface Geology
on Seismic Motion.

Oliver, J., F. Press, and M. Ewing, 1954, Two-dimensional model seismol-
ogy: Geophysics, 19, 202–219, doi: 10.1190/1.1437982.

Pant, D. R., S. A. Greenhalgh, and B. Zhou, 1992, Physical and numerical
model study of diffraction effects on seismic profiles over simple struc-
tures: Geophysical Journal International, 108, 906–916, doi: 10.1111/j
.1365-246X.1992.tb03479.x.

Pratt, R., 1999, Seismic waveform inversion in the frequency domain. Part I:
Theory and verification in a physical scale model: Geophysics, 64, 888–
901, doi: 10.1190/1.1444597.

Rieber, F., 1936, Visual presentation of elastic wave patterns under various
structural conditions: Geophysics, 1, 196–218, doi: 10.1190/1.1437093.

Robertsson, J. O. A., B. Bednar, J. Blanch, C. Kostov, and D. J. van Manen,
2007, Introduction to the supplement on seismic modeling with applica-
tions to acquisition, processing, and interpretation: Geophysics, 72, no. 5,
SM1–SM4, doi: 10.1190/1.2755959.

Roever, W. L., T. F. Vining, and E. Strick, 1959, Propagation of elastic wave
motion from an impulsive source along a fluid/solid interface: Philosophi-
cal Transactions of the Royal Society, 251, 455–523, doi: 10.1098/rsta
.1959.0009.

Sherlock, D. H., and B. J. Evans, 2001, The development of seismic reflec-
tion sandbox modeling: AAPG Bulletin, 85, 1645–1659, doi: 10.1306/
8626CCE9-173B-11D7-8645000102C1865D.

Sherlock, D. H., J. McKenna, and B. J. Evans, 2000, Time-lapse 3D seismic
physical modeling: Exploration Geophysics, 31, 310–314, doi: 10.1071/
EG00310.

Sivaji, C., O. Nishizawa, G. Kitagawa, and J. Fukushima, 2002, A physical
model study of the statistics of seismic waveform fluctuations in random
heterogeneous media: Geophysical Journal International, 148, 575–595,
doi: 10.1046/j.1365-246x.2002.01606.x.

Stewart, R. R., N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and
S. Sil, 2013, Physical modeling of anisotropic domains: Ultrasonic imag-
ing of laser-etched fractures in glass: Geophysics, 78, no. 1, D11–D19,
doi: 10.1190/geo2012-0075.1.

Tantsereva, A., B. Ursin, N. Favretto-Cristini, P. Cristini, D. Komatitsch, and
A. M. Aizenberg, 2012, Comparison of numerical seismic modeling re-
sults with acoustic water-tank data: 74th Annual International Conference
and Exhibition, EAGE, Extended Abstracts, P357.

Tygel, M., and B. Ursin, 1999, Weak-contrast edge and vertex diffractions in
anisotropic elastic media: Wave Motion, 29, 363–373, doi: 10.1016/
S0165-2125(98)00044-4.

Ursin, B., 2004, Parameter inversion and angle migration in anisotropic elas-
tic media: Geophysics, 69, 1125–1142, doi: 10.1190/1.1801931.

Virieux, J., H. Calandra, and R.-E. Plessix, 2011, A review of the spectral,
pseudo-spectral, finite-difference and finite-element modelling techniques
for geophysical imaging: Geophysical Prospecting, 59, 794–813, doi: 10
.1111/j.1365-2478.2011.00967.x.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in
exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10
.1190/1.3238367.

Wilks, D. S., 2011, Statistical methods in the atmospheric sciences, 3rd ed.:
Academic Press.

Woods, J. P., 1956, Composition of reflections: Geophysics, 21, 261–276,
doi: 10.1190/1.1438223.

Zemanek, J., 1971, Beam behavior within the near-field of a vibrating pis-
ton: Journal of the Acoustical Society of America, 49, 181–191, doi: 10
.1121/1.1912316.

Zhang, F., C. Juhlin, and M. Ivandic, 2012, Application of seismic waveform
inversion for time-lapse monitoring of CO2 injection: A real data example
from Ketzin, Germany: 82nd Annual International Meeting, SEG, Ex-
panded Abstracts, doi: 10.1190/segam2012-0684.1.

T90 Tantsereva et al.

http://dx.doi.org/10.1190/1.1884831
http://dx.doi.org/10.1190/1.1884831
http://dx.doi.org/10.1190/1.1884831
http://dx.doi.org/10.1190/1.1443341
http://dx.doi.org/10.1190/1.1443341
http://dx.doi.org/10.1190/1.1443341
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1111/j.1365-2478.2012.01127.x
http://dx.doi.org/10.1190/1.1440426
http://dx.doi.org/10.1190/1.1440426
http://dx.doi.org/10.1190/1.1440426
http://dx.doi.org/10.1029/JZ067i013p05279
http://dx.doi.org/10.1029/JZ067i013p05279
http://dx.doi.org/10.1121/1.1908368
http://dx.doi.org/10.1121/1.1908368
http://dx.doi.org/10.1121/1.1908368
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1111/j.1365-246X.1981.tb06939.x
http://dx.doi.org/10.1121/1.386687
http://dx.doi.org/10.1121/1.386687
http://dx.doi.org/10.1121/1.386687
http://dx.doi.org/10.1190/1.1440140
http://dx.doi.org/10.1190/1.1440140
http://dx.doi.org/10.1190/1.1440140
http://dx.doi.org/10.1190/segam2012-0242.1
http://dx.doi.org/10.1190/segam2012-0242.1
http://dx.doi.org/10.1190/segam2012-0242.1
http://dx.doi.org/10.1121/1.1907218
http://dx.doi.org/10.1121/1.1907218
http://dx.doi.org/10.1121/1.1907218
http://dx.doi.org/10.1121/1.1907218
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1111/j.1365-246X.1984.tb01946.x
http://dx.doi.org/10.1080/14786435608238144
http://dx.doi.org/10.1080/14786435608238144
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04177.x
http://dx.doi.org/10.1190/segam2012-0187.1
http://dx.doi.org/10.1190/segam2012-0187.1
http://dx.doi.org/10.1190/segam2012-0187.1
http://dx.doi.org/10.1190/1.1442531
http://dx.doi.org/10.1190/1.1442531
http://dx.doi.org/10.1190/1.1442531
http://dx.doi.org/10.1190/1.1442330
http://dx.doi.org/10.1190/1.1442330
http://dx.doi.org/10.1190/1.1442330
http://dx.doi.org/10.1190/1.1437982
http://dx.doi.org/10.1190/1.1437982
http://dx.doi.org/10.1190/1.1437982
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb03479.x
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1437093
http://dx.doi.org/10.1190/1.1437093
http://dx.doi.org/10.1190/1.1437093
http://dx.doi.org/10.1190/1.2755959
http://dx.doi.org/10.1190/1.2755959
http://dx.doi.org/10.1190/1.2755959
http://dx.doi.org/10.1098/rsta.1959.0009
http://dx.doi.org/10.1098/rsta.1959.0009
http://dx.doi.org/10.1098/rsta.1959.0009
http://dx.doi.org/10.1098/rsta.1959.0009
http://dx.doi.org/10.1306/8626CCE9-173B-11D7-8645000102C1865D
http://dx.doi.org/10.1306/8626CCE9-173B-11D7-8645000102C1865D
http://dx.doi.org/10.1306/8626CCE9-173B-11D7-8645000102C1865D
http://dx.doi.org/10.1071/EG00310
http://dx.doi.org/10.1071/EG00310
http://dx.doi.org/10.1071/EG00310
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1046/j.1365-246x.2002.01606.x
http://dx.doi.org/10.1190/geo2012-0075.1
http://dx.doi.org/10.1190/geo2012-0075.1
http://dx.doi.org/10.1190/geo2012-0075.1
http://dx.doi.org/10.1016/S0165-2125(98)00044-4
http://dx.doi.org/10.1016/S0165-2125(98)00044-4
http://dx.doi.org/10.1016/S0165-2125(98)00044-4
http://dx.doi.org/10.1190/1.1801931
http://dx.doi.org/10.1190/1.1801931
http://dx.doi.org/10.1190/1.1801931
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00967.x
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.1438223
http://dx.doi.org/10.1190/1.1438223
http://dx.doi.org/10.1190/1.1438223
http://dx.doi.org/10.1121/1.1912316
http://dx.doi.org/10.1121/1.1912316
http://dx.doi.org/10.1121/1.1912316
http://dx.doi.org/10.1190/segam2012-0684.1
http://dx.doi.org/10.1190/segam2012-0684.1
http://dx.doi.org/10.1190/segam2012-0684.1

